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Abstract: 
Contemporary digital architectural design is characterized by an understanding of geometry as logico-algebraic 
text out of which architectural form emerges through the manipulation of data. Such formalistic and operative 
utilization of geometry is ignoring the perceptive dimension of geometry. By looking at the etymological roots of 
mathematics another non-technical reading of geometry can be uncovered that relates geometry back to bodily 
experience and the question of spatial orientation. This opens up the question of orientation within computational 
geometry and re-introduces the body into contemporary discourse of architecture.   
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Introduction 
 
In his introduction to his study on the relationship of projective geometry and architecture the historian and 
theoretician Robin Evans pointed out that “geometry is one subject, architecture another, but there is geometry 
in architecture.  … Geometry is understood to be a constitutive part of architecture, indispensable to it, but not 
dependent on it in any way. The elements of geometry are thus conceived as comparable to bricks that make a 
house, which are reliable manufactured elsewhere and delivered to site ready to use. Architects don’t produce 
geometry, they consume it” (Evans, 1995, xxvi). 
 
Over the past two decades, the architectural consumption of geometry has been intensified with the emergence of 
new methodologies in architectural design that exploit the computer as a design tool. In 1963, Ivan Sutherland’s 
Sketchpad program demonstrated that computers could be used for drafting and modelling. By the mid-1990s, 
architectural practice without graphics software had become unimaginable, and today, digital design 
technologies have been adopted almost universally as the predominant means of production in architectural 
practice. That is architecture is taking part in an “intellectual revolution [that] is happening all around us, but 
few people are remarking on it. Computational thinking is influencing research in nearly all disciplines, both in 
the sciences and the humanities. … It is changing the way we think” (Bundy, 2007, 67).  
 
This “intellectual revolution” has generated a varied set of digital skills and a new type of knowledge and has led 
to a re-examination of current design theories (Oxman, 2006) due to the unavoidable changes of thinking within 
the discipline of architecture by means of computation. With the integration of the computer into the design 
process, Evan’s geometric bricks have been transformed into Turing-machines, i.e. simple abstract devices as 
representation of computable mathematical functions that mediate between input and output (Kotnik, 2010, 6). 
The consumption of geometry by todays digital architecture, therefore, is characterized by a turning towards 
quantification of causal relationships between architectural entities and the algorithmic description of their 
interaction (Kotnik, 2011). 
 
Such need for quantification of causal relationships in a digital design process is similar to the shift in the 
sciences from an Aristotelian thinking to a Galilean thinking in the 17th century. This paradigmatic shift was 
characterized the replacement of metaphysical explanations for the necessity of an observed causality by the 
quantitative recording of phenomena by means of measurable entities like the change in the distance between 
points over time (Kline, 1966, 184-186). Galilei explained his method of quantification of nature in detail in his 
book Discorsi e dimostrazioni matematiche, intorno a due nuove scienze, published in 1638 despite an existing 
ban by the church. Completed and refined in 1687 by Isaac Newton’s Philosophiae naturalis principia 
mathematica the Galilean method turned out to be so powerful that already one century later it was seen as 
unquestionable cornerstone in the scientific study of nature. 
 
The digital in architecture, thus, has the potential to introduce scientific thinking and methodology into the 
design process.1 At the same time, it causes an already ongoing shift in the understanding of the role of geometry 
in architecture. With the need for quantification of causality geometry transforms into a descriptive, logico-
algebraic text for the emergence of architectural form out of the manipulation of data.  
 



 

 
Mathemata 
 
Such a formalistic reduction of mathematics, however, does not reflect the essence of mathematics. Already 
Husserl had pointed out that the scientific method of quantification of causal relationships is an emptying of 
mathematical thinking. (Husserl, 1936) Etymologically, mathematics has its roots in the Greek ta mathemata, 
which means what can be learned where learning, mathesis, is about the recognition of the unchanged, the stable, 
of the Being in a world of constant Becoming (Plato, 2000). 
 
For Heidegger “this genuine learning is an extremely peculiar taking, a taking where one who takes only takes 
what one basically already has. … The mathemata, the mathematical, is that ‘about’ things which we already 
know. Therefore we do not first get it out of things, but, in a certain way, we bring it with us” (Heidegger, 1992, 
293). Mathemata, therefore, is bound to the human perception and its ability to identify reoccurring pattern.  
 
Mathematics is the science of patterns! It is about the examination of numerical patterns, patterns of shape, 
patterns of motion, patterns of behavior. They can be real or imagined, visual or mental, static or dynamic, 
qualitative or quantitative (Devlin, 1996). Mathemata is the human search for patterns as a means of orientation. 
The world is a construct whose main reference point is the here and now of the body. It is from the body that 
surrounding reality is perceived, structured, and accessed (Zec, 2002, 17-19). In its original meaning, 
mathematics is about relating the body with the world around. As such, mathemata is about orientation.  
 

Figure 1 – Pueblo Bonito, Chaco Canyon, New Mexico, USA 
orientation of settlement according to sunrise and sunset on equinox 

 
The concept of orientation has its etymological origins in this subjective quotidian view of the world. The noun 
Orientierung (orientation) is derived from the Middle High German orient, meaning “the east," and the Latin 
oriens, the participle form of oriri, which means “to rise or go up." The orient as a description of the east is thus 
a reference to the rising sun.2 The act of orientation is therefore always an act of positioning oneself in the 
environment and, as a result, of assuring oneself of one's own existence through alignment with the east; an act 
of positioning oneself in relation to the rising sun. 
 
Mathemata as the search for orientation is therefore always a manifestation of being in the world, of integrating 
oneself, of creating borders, and giving oneself space. As an act of giving oneself space, orientation refers to the 
original medieval conception of space as rûm, a cleared settlement site. According to Heidegger, space is that 
which is intrinsically marked out and placed within borders (Heidegger, 1967, 139-56). Orientation can therefore 
be understood as the active and constructive act of appropriating the environment by setting boundaries. 
 
 
Geometrein 
 
In ancient Egypt, this setting of boundaries as a method of appropriating the environment was the main job of the 
geometer (literally: “measurer of the earth"). Hero of Alexandria (c. 20-62 AD) writes: “As the old tradition 
teaches us, the earliest form of geometry dealt with measuring and dividing up estates, which is why it was 



 

called ‘land measuring.' It was the flooding of the Nile that gave the Egyptians the idea of making 
measurements, because many pieces of property that were exposed at the edge of the river disappeared as the 
water rose and only reappeared after it had sunk. It was not always possible to determine who owned them" 
(Hero of Alexandria, 1900). 

Figure 2 - scene from the tomb of Menna, Luxor, Eqypt 
surveying of the land for the calculation of taxes 

 
One of the oldest methods of orientation was this form of geometrization - the measurement of land by 
geometers called Harpedonaptae, or “rope stretchers" (Gandz, 1931, 256-257). Geometrein, the activity of 
measuring the land, can therefore be understood as a means of orienting oneself by creating space, as a carving 
out of physical space by setting boundaries. This was made particularly clear by the ancient Egyptian 
foundation-laying ceremony, the “stretching of the rope," (Rossi, 2004, 148-53) which was the first practical act 
performed in temple construction. The sacred area was marked out by ropes and stakes, and the building's 
orientation and dimensions were set. 
 
 
Euclidean Geometry 
 
The Egyptians' practical surveying skills were legendary and won the admiration of the Greeks. Pre-Socratic 
thinkers such as Thales of Milet (624-546 BC) and Pythagoras of Samos (c. 572-490 BC) traveled through Egypt 
to become acquainted with the skills and knowledge of Egyptian geometers. This knowledge, which was based 
on a set of constructs and special model cases, marked the start of the scientification of geometry and is reflected 
in the Elements, a systematic portrayal of the geometric knowledge of antiquity by Euclid of Alexandra (c. 365-
300 BC) (Gow, 1884, 132- 33). 
 
Euclid traces all mathematical propositions back to five basic axioms that are known as the Five Postulates of 
Euclidean geometry: 1. A straight line may be drawn from any point to another. 2. A straight line segment may 
be extended indefinitely along a straight line. 3. A circle may be described with any point as its center and any 
distance as its radius. 4. All right angles are identical. 5. Finally, if two straight lines intersect a third in such a 
way that the sum of the inner angles on one side is less than two right angles, then the two straight lines must at 
some point intersect on that same side if extended indefinitely. 
 
The validity of the propositions in the Elements rests on the validity of these postulates. According to Euclid, this 
validity is self-evident and requires no further explanation. We can therefore assume that the postulates represent 
abstract descriptions of daily experience, including the daily experience of measuring land. After all, the first 
three postulates can be seen as directly formalizing the fundamental operations of the Harpedonaptae, the rope-
stretching land measurers. The origins of the fourth postulate can also be understood in a similar way. The 
Egyptian geometers used both a rope divided into equal segments and a Pythagorean triangle to measure a right 
angle. (Rossi, 2004, 157-59) This rope method enabled them to compare angles, even those that were non-
adjacent.3 Along with the formation of straight lines and circles, the construction of triangles was one of the most 
important tasks in land surveying, and it is described in the fifth postulate. This explains how to determine the 



 

intersection point of two lines by extending them indefinitely - a method that can be compared to the sighting of 
points and the measurement of geometric shapes using a dioptra, an ancient surveying instrument that Euclid 
mentions in his works on astronomy (Lewis, 2001). 
 

Figure 3 – simple construction of Pythagorean triangle 
 
In view of these parallels between practical experience and theoretical abstraction, we can assume that, for 
Euclid, the evident nature of the geometric postulates resulted from geometrein, that is, from the constructive act 
of measuring land. By means of logical connection - and building on the direct experience and empirical 
verifiability of geometry in everyday use - new statements are possible that can doubtless be interpreted as 
statements about physical reality. One can therefore say that in Euclid's work, logical thought as a method of 
derivation does not transcend the direct experience of the environment but is congruent with it. Consequently, 
Euclid's Elements exemplifies a form of ancient thought that is characterized by the assumption of a fundamental 
and absolute agreement between subject matter and its nominal determination. Conceptual understanding is 
equivalent to physical understanding. Euclidean geometry is geometrein, method of measuring land by means of 
logical thought; an act of physical orientation based on the creation of an intellectual structure. 
 
 
Metrics 
 
Nevertheless, the knowledge and skills involved in land measurement were not developed to enable people to 
orient themselves by creating geometrically structured spaces. They resulted from the Egyptian taxation system, 
which imposed taxes based on the size of the farmed land. It is precisely this quantitative determination of size 
that is impossible in Euclidean geometry, since its postulates merely allow us to understand - in a step-by-step 
fashion - how geometric figures are formed without making any statement about dimensions. Constructs of 
Euclidean geometry are therefore scale-independent and merely describe the relations between different 
geometric elements.4 
 
Only when geometry is contextualized does it become a real orientation aid in physical reality, and only when 
geometric constructs are linked to the experienced human scale does Euclidean geometry become geometrein. 
The introduction of metrics, that is to say, a system for defining spatial dimensions, made it possible to transpose 
geometry into space and allowed people to orient themselves by means of the structure of the spatial 
environment, with their position as the central reference point.5 
 
The limits of Euclidean geometry illustrate that the act of orientation, as an active measurement of surrounding 
space, determines a structure that is both geometric and metric in nature. Both structures can be understood as 
cognitive structures of knowledge generated by perception and experience - structures that, as individual patterns 
of action, shape the individual perception of the world, the world view or weltanschauung, and, conversely, that 
impinge on perception (Zec, 2002, 25). Spatial orientation, which results from this subjective world view, is 
therefore also subjective.  
 
A shared world view emerges only when individual world views are compared, since as social beings humans 
always orient themselves to fellow human beings and their orientation behavior. Socially accepted orientation 
behavior is therefore based on a social construct of reality (Berger, 1997). 
 
 



 

Riemann Manifolds 
 
This comparison of individual structures formed the conceptual foundation for the advancements in geometry 
made in the work of Bernhard Riemann (1826-1866). The concept of the “manifold" described in his 1854 
habilitation lecture „Über die Hypothesen, welche der Geometrie zu Grunde liegen" ("On the Hypotheses Which 
Lie at the Basis of Geometry"), is based primarily on the work of Johann Friedrich Herbart (1776-1841), who 
succeeded Kant as professor in Konigsberg (Scholz, 1992). According to Herbart, as people move through space, 
they have a variety of perceptions that do not have an immediate effect on consciousness. Herbart argues that 
these perceptions undergo a "graded fusion" in the mind (Herbart, 1824). This process of fusion, which Herbart 
describes as having serial form, "glues" together the individual perceptions to form a holistic geometric image 
and cognitive knowledge-structure without abrogating the individual perception. 

 

Figure 4 – Cubistic composition as graded fusion of various perspectives 
 
Riemann's idea of manifolds renders Herbart's psychological concepts more concrete and precise for 
mathematical application. A manifold consists of a large number of local maps - that is, descriptions of a limited 
environment based on Euclid's ideas about space. The sum of all these local manifold maps describes the sum of 
cartographically defined points and is called an atlas. Furthermore, for the maps of contiguous spatial regions 
there exists a transformation rule that clarifies transitions from one map to another by adapting local metrics. In 
this operation the local maps become increasingly distorted along their edge, which means that dimensions are 
continually changed in order to facilitate a seamless, smooth transition between maps. 
 
Riemann's concept of manifolds universalizes a form that we are familiar with from cartography: atlases as 
collections of maps and abstract geometric images of the earth. Maps of contiguous regions must be successively 
overlaid, twisted, and distorted in order to piece together a collection of images that form a comprehensive image 
of the earth (the globe). The manifold is therefore a mathematical construct that is meant to facilitate the study of 
the interaction between local and global geometry by rendering metric structures more flexible. 
 
 
Computability 
 
Euclid's geometry and its universalized form in Riemann's manifolds are examples of how mathematical 
concepts can be created by formalizing the act of orientation. With the integration of computers into the design 
process, we can observe again a fundamental shift in the conception of geometry, a shift visible in the emergence 
of  computational geometry.6 
 
This conceptual shift is caused by the fact that computers are actively shaping the way we as users approach 
design questions. It was Merleau-Ponty who pointed out that as humans have to see our bodies not only as the 
physical context or milieu of cognitive mechanisms, but also as a living, experiential structure that is both 
biological and phenomenological (Varela, 1991). Human understanding of the world, therefore, depends in large 
part on the interaction of the body with its environment (Gallagher, 2006). Every tool mediates this interaction 



 

because of its specific usage, thereby influencing the perception of the user and his way of thinking. The 
paradigmatic changes in many scientific disciplines demonstrate that this is true in particular for the computer 
despite the seemingly unspecific neutrality of the machine that enables its versatile application. 
 
Using a computer always means, without exception, the necessary limitation on computable functions as 
mediator between input and output (Kotnik, 2010, 4). The purpose in the integration of computers as tools into 
the design process lies in the conscious exploration of the potential of the defining elements of a computable 
function as design tools: of the formal relationship between sets of entities, of quantifiable properties of these 
sets of entities, and of algorithmic transformations and interaction of different quantifiable properties. Digital 
design, thus, is not about the formalization of design processes or the automatization of decision making like for 
example in William Mitchell’s The Logic of Architecture (Mitchell, 1990) but about the interaction of formal 
processes with architectural thinking; it’s not about computerization but much more about computation 
(Terzidis, 2006). 
 
As Kostas Terzidis puts it: “Computation is about the exploration of indeterminate, vague, unclear, and often ill-
defined processes; because of its exploratory nature, computation aims at emulating or extending the human 
intellect. It is about rationalisation, reasoning, logic, algorithm, deduction, induction, extrapolation, 
exploration, and estimation.”  When Alan Turing formalized the idea of computation in the 1930s he had in 
mind a description of the process of calculation by human beings or as Wittgenstein described it: “Turing’s 
‘Machines’. These machines are human who calculate” (Wittgenstein, 1980, §1096). This means, computational 
thinking has to be seen as the logical exploration of the space of the possible, as rational measuring of the 
imaginable.  
 

Figure 5 – Peter Eisenman: Guardiola House, Spain, 1988 
undermining of anthropocentric reading of architecture through repeated application of geometric operation  

 
Hence, computational functions make tangible ‘The Formal Basis of Modern Architecture’ that Peter Eisenman 
has started to explore in his famous Ph.D. thesis in 1963, where he considered architectural form “as a problem 
of logical consistency, in other words, as the logical interaction of formal concepts” (Eisenman, 2006). Already 
with his early work like the house projects or the Guardiola House – spatial configurations based on formal 
geometric operations - he is questioning the traditional anthropocentric reading of architecture and the 
hierarchical relationship of subject and object (Eisenman, 1995). In his later work computational geometry is 
used as a form of spatial writing where the resulting complexity of shapes is challenging the perception of the 
user and geometry functions as a mediator for intellectual discourse on architecture.   
 
 
Conclusion 
 
Looking at the development throughout history we can conclude, that the abstract nature of geometry is not so 
much the expression of pure logic as it is an attempt to make human perception and experience more 
conceptually precise and transform them into geometrein in the sense of creating orientation in space through the 
act of measurement. The different resulting spatial ideas are the product of the different metrics of measurement: 
starting point of Euclidean geometry is the abstract technique of measuring the physical environment, Riemann's 
manifolds are based on the cartographic measurement of an internal cosmos of the imagination, Computational 



 

Geometry is based on the procedural measurement of the thinkable. From the haptic geometry of antiquity, to the 
visual geometry of modernity, and the imaginable geometry of contemporary times we can see formalizations of 
various means of measurement of the space of human existence.  
 
In general, the act of measuring is always a political act, a reorientation within political space (Tavernor, 2008). 
This is made especially apparent by developments in the eighteenth century, when measurement became a 
central perceptual category in academic and political discourse. The impressive precision and self-evident nature 
of numbers made them a seemingly objective yardstick for political action and the favored medium for political 
communication (Behrisch, 2006, 7). The abstract nature of the concept of measurement in Riemann's work, 
together with the observed shift of physical space into perceptual space, opened the way for an extension of the 
concept of space and the application of spatial thought to social and cultural phenomena.7 

 

Figure 6 – net of triangulation for surveillance of kingdom of Saxony, 1890  
 
It therefore cannot surprise that the concept of Riemann’s manifold and the rhizome as its discrete version is of 
crucial importance for Gilles Deleuze and Felix Guattari in their study of contemporary culture summarized in A 
Thousand Plateaus: Capitalism and Schizophrenia (Deleuze, 1987). Through a layering of seemingly unrelated 
subjects a “graded fusion” is provoked out of which a holistic but individual picture of society, a so-called body 
without organs, emerges. Not unlike Heidegger’s mathemata this results in a world that “begins to signify before 
anyone knows what it signifies; the signified is given without being known” (Deleuze, 1987, 112).  
 
Inspired by this thinking, Greg Lynn has been trying to argue for a new kind of understanding of geometry in 
architecture; one that is no longer tied to a transcendental value system, but is an adequate expression of the 
contemporary reality (Lynn, 1998). His valid critic of the traditional use of geometry as symbolic language, 
however, has not led to a rethinking of the relationship between body and geometry but rather to a replacement 
of systems of proportions as guidelines for classical geometric constructions by a system of parameters and 
weights as guidelines for constructions in NURBS-geometry (Lynn, 1999). That is, Lynn has merely replaced 
one system of quantification by another system of quantification and to some extend reconstructed the Galilean 
method of quantification in the realm of digital architecture. This has strongly influenced our contemporary 
understanding of geometry and the incorporation of environmental context into the design process by means of 
measurable physical entities like wind pressure, sun angle or heat differences.       
 
Measuring space is a central activity for structuring our surroundings and an important orientation element in the 
human environment. However, this environment must not be understood in a limited way as the purely physical 
environment. It must be seen more broadly and comprehensively as a multilayered perceptual and experiential 
space. This expanded understanding of space and the incorporation of the subject into space transforms 
measurement into an act of individual orientation. The importance of such bodily measuring of space, of 
geometrein, is not only justified by philosophers like Heidegger, Merleau-Ponty or Deleuze but also by 
developments in contemporary neuroscience. What emerges is an understanding of architecture as a primarily 
emotional and perceptual experience grounded in biological values that have to be put forward in the design 
process (Mallgrave, 2010). What is needed is a new mathesis of architectural geometry in digital design.    
 



 

 
 
Endnotes 
 

1. „Computationally advanced design techniques such as scripting and parametric modeling are 
becoming a pervasive reality such that it is no longer possible to compete within the contemporary 
avant-garde architecture scene without mastering and refining them.“ (Schumacher, 2009, 17) 

2. Many languages make this conceptual connection between the east and the rising sun. See (Brown, 
1983) or (Heine, 1997).  

3. Euclid does not base his definition of a right angle on the number of degrees (90), bur on the 
intersection of two straight lines. If two adjacent angles are equally large at the point of intersection, the 
intersecting angle is described as a right angle. This means that a practical comparison of angles at 
different points of intersection requires a theory of measurement – the "rope triangle" – which is 
theoretically expressed by Postulate 4. 

4. The primacy of the numerical relations between whole numbers in Greek thinking is characteristic of 
this understanding. They run through Plato's work as musical harmonies and reappear in the manner in 
which Vitruvius describes temple structures using numerical ratios and pillar diameters as referential 
values. For a comprehensive discussion of what are known as commensurable numbers, see (Naredi-
Rainer, 1982).  

5. It was not until the seventeenth century that Euclidean geometry was connected to metrics by the 
coordinate system introduced by Rene Descartes and Pierre de Fermat. This coordinate system plays a 
central role in Descartes' philosophy since it shows the dualism of the res extensae of the extended 
world of objects and the res cogitans of the unextended world of the mind. To a certain degree, one may 
understand dualism as an examination of the question of orientation within space. 

6. Computational approaches to geometry can be found already in antiquity. As a new discipline in 
computing science, however, modern computational geometry has its origin in the late 1960s and early 
1970s in the Ph.D. thesis of Michael Shamos at Yale University in 1978 and of Robin Forrest at 
Cambridge University in 1968 as well as the formal investigation into geometric properties of figures 
conducted by Marvin Minsky and Seymour Papert as part of their research into artificial intelligence. 

7. This rediscovery of spatiality in the social and cultural sciences is often described as the "spatial turn." 
See, for example (Bachmann-Medick, 2006), (Schlagel, 2003), (Crang, 2000) and (Lefebvre, 1991).  
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