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Abstract

Reciprocal frame construction refers to a structural system that was developed 
first in eastern Asia in the 12th century. Short bar-shaped elements allow a sur-
face to be spanned whose area is many times that of the length of the individual 
bars. In addition to the global geometry of the resulting surface, of particular 
interest is the interaction of forces between the individual bars that enables the 
load support and gives rise to the specific systemics of the overall structure. This 
paper intends to analyse these topics and the resulting possibilities. 

Keywords: Discrete structures; bar-shaped structures; spatial structures; 
structural analysis; analysis method.

according to the principle of recip-
rocal frames,5 and Sebastiano Serlio 
addressed the problem of how to span 
a ceiling with beams that were signifi-
cantly shorter than the span of the ceiling 
itself (Fig. 2a).6 A comparable structure 
system made of reciprocally supporting 
bar-shaped elements is the Zollinger 
System which is mainly used in timber 
roof constructions.7 Friedrich Zollinger 
obtained a patent for it in 1923.

Sophisticated timber products—such 
as glulam trusses and plywood—that 
produce long spanning structural ele-
ments through adhesive technology 
have led to the replacement of recip-
rocal frames and similar structures.

However, these highly interesting sup-
porting structures can be found today 
in academic environment where the sys-
tem continues to be used as an experi-
mental model due to the fascinating 
simplicity of the reciprocally bearing 
elements. In addition, research interest 
is motivated by the fact that comparable 
structures of discrete elements do occur 
in nature, for example in bird nests. In 
the course of the ever-increasing sig-
nificance of biomorphic architectural 
language, it is immediately important to 
become acquainted with the functional 
behaviour of such structures.8 

In the course of awareness of recycla-
bility and resource saving, reciprocal 

Introduction

A reciprocal frame is understood as a 
structural system formed by a number 
of short bars that are connected using 
friction only and span many times the 
length of the individual bars (Fig. 1a). 
This paper describes an academic view of 
the structural behaviour of such systems. 
A method is presented that describes 
the distribution of forces through the 
structure and can serve as a basis of a 
design method for practical usage.

History

The first reciprocal frame structures 
appeared in Chinese and Japanese 
architecture in the 12th century, pri-
marily with wood-constructed roof 
support system1 described as the man-
dala roof (Fig. 1b). Today, this roof 
design and also more complex recipro-
cal frame designs (Fig. 1d) are mainly 
used in Japanese architecture (see, e.g., 
Kazuhiro Ishii2 and Shigeru Ban3).

In Europe, reciprocal frame structures 
were first introduced in the 13th cen-
tury by the gothic architect Villard de 
Honnecourt.4 His sketch books show 
illustrations of suggestions for roof 
support systems using this design prin-
ciple. In the beginning of the 16th cen-
tury, Leonardo da Vinci developed idea 
sketches for bridges, roofs and ceilings 

(a) (b)

(c) (d)

Fig. 1: (a) Simple reciprocal frame structure; (b) Bunraku Puppet Theatre—Exhibition 
Hall, Seiwa, Kazuhiro Ishii, 19942 (S. 93); (c) more complex reciprocal frame structure2 
(S. 23); (d) Bunraku Puppet Theatre—Auditorium, Seiwa, Kazuhiro Ishii, 19942 (S. 101) 
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frames and similar structures should 
be considered again. If the internal 
forces are known, each element in such 
structures can be adjusted to its stress 
and therefore an optimized  material 
consumption can be guaranteed. 
Nowadays, such customization is eas-
ily realizable through the possibility of 
digital fabrication.

Geometry and Load-Bearing 
Behaviour

A reciprocal frame structure is decom-
posable into basic elements which cir-
cumscribe a polygon with at least three 
sides whereby the figure may be either 
regular or irregular (Fig. 2c). A recipro-
cal frame structure can be constructed 
from identical or non-identical basic 
elements as long as a tessellation pat-
tern exists (Fig. 2d).

The joining of the elements at the 
node points can generally be carried 
out without mechanical connections, 
but solely by pressure and friction. 
To support the frictional force, sim-
ple connection techniques such as 
tying together (Fig. 1c) or notching 
of the bars at the contact points may 
be used (Fig. 2b). Directly dependent 

on the development of the connec-
tions is the deformation of the entire 
system under loading. Increased slip-
page that occurs with simple join-
ing, such as tying together, results in 
increased deformability of the entire 
structure.

From a structural standpoint, each indi-
vidual bar in the system functions as a 
single beam. This beam lies at each of 
the bar’s ends either on another bar or, 
if it forms the edge of the system, on the 
supports of the entire system. Each bar 
bears the supporting force of the one 
or two bars resting on it and optional 
dead loads or live loads (Fig. 7).

With straight bars lying on top of each 
other at their node points, the height 
offset between the contact points of the 
acting forces and the supporting loads 
creates a convex curvature of the sys-
tem (Fig. 1c). In this case, the degree of 
curvature can be controlled by the gra-
dients of bar length and the distance 
between the acting force and the sup-
porting force. Additional options for 
controlling the gradients exist in the 
form of bending of the bars or notching 
at the node points, whereby gradient 
values ≤0 can be achieved. A gradient 

<0 produces a concave curvature, and 
a gradient = 0 of each bar results in a 
plane system (Fig. 2b).

In a horizontal plane reciprocal frame 
structure, the individual bars can be 
assumed to be statically determinate 
sub-systems, due to the fact that they 
act as a simple beam. The supporting 
forces of each bar are thus independent 
of the material and bar cross section.

With regard to horizontal forces, a 
three-bar basic element is statically 
determinate internally to the extent 
that the intersections are assumed to 
be flexible connections. Higher barred 
elements or elements consisting of 
more than three bars are moveable. 
The static determinacy of the support-
ing structure in regard to horizontal 
load can be controlled by appropriate 
combinations of higher barred basic 
elements and by appropriately sup-
porting the entire structure.

Systemic Observation

In the following text, the interaction of 
the elements of reciprocal frame struc-
tures under loading will be addressed. 
Only plane structures under perpen-
dicular loading will be considered. The 
exclusion of spatial structures and non-
perpendicular loads is justified in that 
the methods shown here must have the 
basic prerequisite of decomposability 
of the entire system into a statically 
determinant component system.

Distinctions shall be made between 
the following hierarchical systems:

– Single bar (a in Fig. 3): 
 smallest system unit. 
– Basic system (b in Fig. 3):
 decomposable into single bars. 
– Component system (c in Fig. 3):
 decomposable into basic systems 

and single bars. 
– Entire system (Fig. 3):
 decomposable into component sys-

tems, basic systems and single bars. 

The individual systems can be com-
bined with each other. This results in 
hierarchically equal or higher system 
types. The connection within the sys-
tem is defined by node points.

In this view, the load of a system is 
seen not as a static equilibrium state 
in which acting forces are established 
from the supporting forces, but the load 
is considered to be an iterative process 
of the interaction of sub-systems. In 
this connection, each iteration step is 
representative of the static equilibrium 
state observation of sub-systems. The 

Fig. 2: (a) Sebastiano Serlios proposal of a ceiling structure composed of short elements6 
(S. 31); (b) plane reciprocal frame structure; (c) examples of basic elements: Regular (left), 
irregular (right); (d) examples of reciprocal frame structures consisting of identical basic 
elements (left), consisting of non-identical basic elements (right) 

(a) (b)

(c) (d)
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initial state of the iteration process is 
the external load of the system.

In each iteration step, the supporting 
forces from the conditions of equi-
librium result from the progressions 
of the observed sub-system. These in 
turn represent in the next iteration 
step the progressions of the observed 
neighbouring system. As the process 
progresses, the number of observed 
sub-systems increases (a in Fig. 4).

Beginning at any starting point or at 
any iteration step, the analysis of the 
iteration step progressions leads to a 
differentiation of two different types of 
iteration step progressions (b in Fig. 4).

Cyclical: Progression where any bar is 
involved in the observation recurrently 
each time after a specific number of 
iteration steps. A bar in a cyclical pro-
gression thus demonstrates a concat-
enation of interactions with itself. The 
entirety of bars observed within one 
cyclical progression is defined as one 
possible basic system.

Diffused: Progression where each bar is 
involved in the observation only once, 

thus no bar exhibits a  concatenation 
of interactions with itself. Such pro-
gressions describe the dispersion of 
the iteration steps in the system and 
describe the linking of the basic system 
with its neighbouring system.

Behaviour of a Basic System

First of all, the iterative process will be 
analysed on a basic system, based on a 
decomposition into sub-systems. Here, 
the sub-systems are single bars, repre-
senting the smallest system unit of a 
reciprocal frame structure.

In the following, n is the number of 
individual bars constituting the basic 
system whereby n must be >3, as oth-
erwise no operating system is possible. 
Furthermore, k is the index of the 
observed bar and i that of the present 
iteration step. KA,k and KB,k are the 
node points of the system, whereby 
KA,k forms the support points on the 
system edge and KB,k the contact 
points to the neighbouring bar. Ak 
and Bk are the respective nodal forces. 
ak and bk apply to the proportions of 
node  distances on the single bar, k.

a
K K

K Kk
B k B k

A k B k

= 1, 1 ,

, ,

− ≤
 (1)

b
K K

K Kk
A k B k

A k B k

= 1, , 1

, ,

− ≤

ak + bk = 1 

The condition of equilibrium results in 
the sub-system of the single bar k from 
the acting force Bk–1: 

Ak = ak . Bk–1 (2)
Bk = bk . Bk–1

As it is a matter of cyclical observation, 
the index k = –1 is the equivalent of k = 
n – 1, and k = n is the equivalent of k = 0. 
Therefore, the variables u = (k + i)modn 
and v = (k + i – 1)modn are introduced. 
Thus, if Bk is the acting force on the 
basic system, Au and Bu apply to the 
increase in static forces at points KA,u 
and KB,u in any iteration step i > 0.

Au = au . Bv  
(3)

Bu = bu . Bv 

Each bar of the basic system is involved 
exactly once in an equilibrium formu-
lation within a progression of n itera-
tion steps, whereby the node forces Ak 
and Bk receive a value each time, which 
is the increase in static force at nodes 
KA,k and KB,k in each iteration step. 
Figure 6 illustrates the values Bk in a 
regular four-barred basic system with 
one acting force at node point KB,3. 
It shows an exponentially decreasing 
increase in static forces at the nodes.

The equilibrium formulation of all 
node points can be described in one 
term through matrix notation. Thus, 
one step of the iterative process for 
any basic system made up of n bars can 
generally be formulated as follows:

Fi = AFi–1 (4)

where A, denoted in the following as 
the load distribution matrix, includes 
the geometrical conditions of all bars in 
a planar basic system (e.g. see Fig. 5).
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Fig. 3: Entire system with sub-systems. (a) top left: Single bar; (b) bottom left: Basic 
 system; (c) right: component system
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Fig. 4: (a) left: Example of three iteration steps: first red, second blue, third green; (b) right: 
Example of a cyclical and a diffused iteration step progression
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F0 relates to the beginning of the itera-
tive observation, and comprises the 
external forces of the system. It applies 
to the increase of node forces in itera-
tion step i:

Fi = AiF0 (7)

With the maximum norm ⏐⏐A⏐⏐ < 1 
applies

i
i

→∞
lim F 0=

 (8)

Ft applies to the node forces existing 
in iteration step t. These are the sum 
of all force increases of the preceding 
iteration steps:

F Ft
i

t

i=
=0
∑

 (9)

F F= t t→∞lim  results with the maximum 
norm ⏐⏐A⏐⏐ < 1:

F F A F E A F= = =
=0 =0

0
1

0
i

i
i

i
∞ ∞

−∑ ∑⎛
⎝⎜

⎞
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−( )
  

 (10)

identity matrix E ∈R2n×2n

The node forces F determined in this 
manner (Eq. 10) correspond to the val-
ues of a static equilibrium observation 
in the classical sense.

As an example, a three-barred basic 
system as seen in Fig. 2c is considered. 
The proportions of the node distances 
in all bars are a = 0,3 and b = 0,7. This 
results in a load distribution matrix as 
follows: 

A =
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For the external load, only dead load is 
considered. Therefore the load in each 
node point is half of the bar weight, 
g = 0,5 . S. With it applies 
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The limit of the iterative observation 
as shown above (Eq.10) results in the 
following:

F =

1, 667

1, 667

1, 667

S

S

S

S

S

S

⋅

⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

 (13)

The components Ak = S (support 
points of the system) and Bk = 1,667 . S 
(contact points to the neighbouring 
bars) included in F are equivalent to 
the node forces resulting from a static 
observation of this system in the clas-
sical sense.

Systemic structure of reciprocal 
frame structures

To comprehend the iteration process 
of an entire reciprocal frame structure 
as described above, it is necessary to 
formulate the load distribution matrix 
A of the entire system. Using a node-
wise process, as shown in the previous 
section, can become very complex.

For this reason, the following shows 
the analogies between hierarchical 
structures of systems according to the 
definition given at the beginning and 
according to the structure of the load 
distribution matrix A from sub-matrices. 
This information allows for the sys-
tematic creation of the load distribu-
tion matrix for a complex reciprocal 
frame system.

The structure takes place according to 
the hierarchy defined above.

Single Bar

When observing an individual bar of 
a reciprocal frame system, four node 
points can be specified where forces 
may occur:

– Two points KF,0 and KF,3, where the 
bar lies on its neighbouring bars 
or with the support of the entire 
structure. 

– Two points KF,1 and KF,2, which in 
turn form the support for other bars 
and, as a result, acting forces can 
result at these points. 

a, b, c and d apply to the propor-
tions of node distances of a single bar 
(Fig. 7). 
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Fig. 5: Example of a basic system (n = 4). 
(a) statics system; (b) sub-system “bar 0” 
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Fig. 6: Iteration process of Bk with n = 4, 
ak = 0,4, bk = 0,6
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Fi (in Eq. 4) includes all the increases 
in node forces in the observed itera-
tion step i: 
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Analogous to what was shown in the 
previous section, an iteration step can 
be described as follows: 

F A Fi S S
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Since the system is a statically determi-
nate system, the elements of the load 
distribution matrix As consist only of 
geometrical factors. F0,s comprises the 
node forces at the beginning of the 
iterative observation.

Fi,s applies to the single bar for i > 1.

F 0i S, =

Basic System

The basic system is built from n single 
bars. The following intends to demon-
strate that the system’s load distribu-
tion matrix AG can be set up from a 
structure of n × n sub-matrices.

For that purpose, we must note in a 
first step the n load distribution matri-
ces As,k of the single bars on the main 
diagonals of the basic system’s matrix.

A
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As only the main diagonals are being 
used, there is no interaction of the sub-
matrices in this matrix structure. This 
corresponds to a system made up of n 
independent bars (Fig. 8a).

To achieve a system with dependent 
bars (Fig. 8b), sub-matrices must be 
produced in the load distribution 
matrix on the other side of the main 
diagonals that describe the depen-
dence of the single bars. These sub-
matrices are described in the following 
text.

The connecting of two bars corre -
sponds to the overlaying of two 
node points. This results in a merging 
together of the two columns assigned 
to the nodes listed in the load distribu-
tion matrix A*

G.

The assignment of node g on bar k 
in the system to column h of matrix 
A*

G is

h k g= 4 ( 1)⋅ − +  (17)

Should any node g0 from bar k0 be 
overlaid with node g1 from bar k1, this 
corresponds to the transposition of 
corresponding columns h0 and h1 of 
A*

G (Fig. 9a), as well as to the subse-
quent removal of column h1 and of line 
h1 (Fig. 9b).

As an example, this overlaying of two 
nodes is shown in a basic system made 
up of four bars (Fig. 9).

If this method is used to proceed with 
all four connection nodes, the basic 
system results (Fig. 8b), which corre-
spond to the following load distribu-
tion matrix:
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Fig. 8: Example n = 4: (a) System with independent bars; (b) system with dependent bars
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AG (Eq. 18) is functionally identical 
to the load distribution matrix A of 
the basic system shown in the previ-
ous section (Eq. 5). However, in AG 
the non-loaded node points are taken 
into consideration and in the following 
become significant when the basic sys-
tem is expanded.

Component System

In the same way that a basic system 
is constructed from single bars, the 
formation of a suitable component 
system is made up of identical or non-
 identical basic systems. An  observation 

Fig. 9: (a) Transposition of columns h0 and 
h1; (b) removal of column h1 and line h1 
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For systemic observation, distinctions 
were made at the beginning of the 
text between cyclical and diffused pro-
gressions of iterative steps. The load 
distribution matrix can be likewise 
decomposed into a cyclical part AT,z 
and a diffused part AT,d. It is valid 
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These parts, for the example shown 
above, are 
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In each of the basic systems from which 
the component system is made, one 
cyclical progression of iteration steps 
can be determined. This progression 
is described by the cyclical part AT,z. 
Each sub-matrix A*

G,p (0 ≤ p < m) here 
describes those progressions of itera-
tion steps that comprise exclusively 
components of the accompanying sub-
system p.

AT,d describes the diffusion of the 
iterative observation, and thus those 
progressions of iterative steps that 
describe the interaction of the individ-
ual sub-systems.

The main matrix AT and its diagonal 
elements A*

G,p must be quadratic; how-
ever, the sub-matrices of the diffused 
part must not.

Entire System

In the same manner that component 
systems are constructed from basic sys-
tems, entire systems can be built from 

Node no.  0  1  2  3  4  5  6  7  8  9  10  11 

Iterative (kN) 6,63 13,32 8,4 2,04 0,44 18,15 0,82 13,48 20,33 13,14 2,76 0,49

Finite Element 
Method (kN) 

6,57 13,4 8,39 2,02 0,44 18,22 0,82 13,35 20,4 13,12 2,78 0,49

Difference (%) 0,9 0,6 0,12 0,98 0 0,39 0 0,96 0,34 0,15 0,72 0

Table 1: Evaluation of the proposed method by the Finite Element Method

(a) (b)

Fig. 10: (a) Component system with inde-
pendent basic systems; (b) component sys-
tem with dependent basic systems 

of  component systems is useful if pat-
terns repeat in a reciprocal frame 
structure.

To comprehend a component system 
made up of m basic systems, the load 
distribution matrices of the basic sys-
tems have to be placed on the main 
diagonals of the component system’s 
matrix. This corresponds to m inde-
pendent basic systems (Fig. 10a).
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To establish a connection of the basic 
system (Fig. 10b), sub-matrices must 
be produced on the other side of the 
main diagonals of A*

T which describe 
the interaction of the diagonal ele-
ments. This takes place analogous to 
the process that was described for the 
construction of the basic system.

As an example, the following is the 
load distribution matrix results for a 
component system made up of four 
basic systems: 
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For this component system, two dif-
ferent types of sub-matrices result. B 
describes the connection to the basic 
element joined in a counter-clockwise 
manner; C is the connection to the 
basic element which joins in a clock-
wise manner.

basic and component systems. For this, 
the results of the load distribution 
matrix A, which regarding construc-
tion and characteristics, is comparable 
to the load distribution matrix of a 
component system.

A is also decomposable into a cyclical 
part Az and a diffused part Ad, both of 
which behave similar to parts AT,z and 
AT,d for a component system.

In order to verify the method of itera-
tive observation of element interaction, 
the results of different structures were 
compared with those of a static calcula-
tion through the finite element software 
Cubus. As an example, the comparison 
for the entire system shown in Fig. 3 is 
illustrated here. It is loaded with a force 
of 100 kN at node 12 and has propor-
tions of node distances of a = 0,3 and 
b = 0,7 in all bars. Table 1 shows the 
results of the supporting points (nodes 
0 to 11) in both procedures. It can be 
seen that the results differ from each 
other by less than 1%.

Conclusion

In this paper, a possibility has been 
described to examine the forces within 
plane reciprocal frame structures. The 
illustrated approach is not meant to 
be a practical design procedure but is 
to be considered as merely academic. 
In the first place, it is to develop an 
understanding of the behaviour of such 
structures and it can therefore form the 
basis of practical methods that analyse 
and design reciprocal frames or com-
parable structures.

The method is a systematic analysis of 
the interactive behaviour of the totality 
of all sub-systems in a plane reciprocal 
frame structure. Analogous to construc-
tion from sub-systems, construction of 
the load distribution matrix A, which 
is necessary for the observation shown 
here, is a result of sub-matrices. As such, 
sub-systems and reciprocal frame struc-
tures can be of any form if construction 
of the bars is geometrically compatible 
and the structure can function accord-
ing to the reciprocal frame principle.

By using the iterative observation 
method to observe the increase in node 
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Fig. 13: Geometry and force diagram of a 
single bar in general case
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F1Fig. 11: Elements of a grid

Fig. 12: Number of iteration steps until 
the support point is included: d(KF,KA,0) 
= 4, d(KF,KA,1) = 7, d(KF,KA,2) = 10, 
d(KF,KA,3) = 7
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forces within the system, it is possible 
to illustrate the systemic behaviour of 
the interaction of sub-systems in recip-
rocal frame structures as follows: 

F A Fi
i= 0  (7)

By illustrating the individual iteration 
steps, it is possible to produce a simula-
tion comparable to the load distribu-
tion in a structure. Moreover, the limit 
of the sum of all iteration steps can be 
uniformly formulated as follows: 

F E A F= 1
0−( )−

 (10)

This limit F consists of all node forces 
of the structure according to the static 
equilibrium.

A comparable systemic observation 
can also be applied to various other 
structures. However, the prerequisite 
exists that the structures must be made 
up of discrete elements and that the 
sub-system of each element must be 
assumed to be a statically determinate 
equilibrium system.

For instance, this method can be used 
to determine the lateral forces at the 
node points of grillages, assuming that 
all loads act perpendicular to the gril-
lage. A decomposability into elements 
must be found that interact on the 
principle of reciprocal frames, so that 
each sub-system (Fig. 11) can then be 
assumed to be a statically determinate 
equilibrium system. In an easy man-
ner, the internal forces of a grid can be 
found through this method and, out of 
this, simple geometrical rules for the 
formation of the individual bars can be 
established so that they meet the static 
demands.

In the illustrated example (Fig. 12), the 
individual steps of an iterative obser-
vation of sub-systems on a grillage are 
shown starting at the acting force F at 
the node point KF. The figure shows 
the smallest possible number of itera-
tion steps for each of the four sup-
port points KA,w (0 ≤ w < 4) up to the 
point that it is involved in the observa-
tion for the first time. Since the forces 
observed in each step decrease expo-
nentially as the iteration progresses 
(Fig. 6), the method demonstrates that 
the forces in a load-bearing structure 
are primarily carried by the support 
which exhibits the smallest distance to 
the acting force.

If the structural conditions of a slab that 
is being acted upon by  perpendicular 
forces are illustrated with appropri-

ate grillage, this method can also be 
applied.

Further developmental potential of 
the method shown consists of, in the 
simplest case, the expansion of spa-
tial structures under non-perpendicu-
lar-acting loads. As such, comparable 
behaviour in the interaction of sub-
 systems is to be expected, with the 
occurrence of systemic behaviour simi-
lar to that shown here.

The challenge here is the static inde-
terminacy of the sub-systems (Fig. 13). 
The support forces F0 and F3 can no 
longer be determined solely with geom-
etry and with the actions F1 and F2, but 
additional assumptions, for example, of 
material or joints are necessary.

Yet another challenge is the trans-
mission of the systemic observation 
shown here onto similarly behaving 
spatial structures made up of discrete 
elements. These structures are of par-
ticular significance in the area of bio-
morphic architecture. Contemporary 
examples are the Olympic stadium 
in Beijing by Herzog and de Meuron 
and the Centre Pompidou in Metz by 
Shigeru Ban.
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